
llm-project

September 17, 2025

1 MINI LARGE LANGUAGE MODEL (LLM)PROJECT

2 LLM (Large Language Model) :-

3 A smart AI model trained on large amounts of text that can
read, understand, and generate human-like text, helping in
tasks like answering questions, analyzing text, or automating
communication

[]: # --
Step 1: Problem Definition
Task: Sentiment classification (Positive / Negative) using LLM
--

Step 2: Import Libraries
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, classification_report,␣

↪confusion_matrix, ConfusionMatrixDisplay
from transformers import pipeline

[]: # --
Step 3: Data Collection
Load dataset (Excel file with Text + Label)
--
data = pd.read_excel("/content/sample_texts.xlsx") # replace with your file if␣

↪needed

[]: print("Data")
print(data.head())

Data
ID Text Label

0 1 I love learning about AI and Machine Learning. Positive
1 2 This is the worst movie I have ever watched. Negative
2 3 Python is a very useful programming language. Positive

1

3 4 I am not happy with the customer service. Negative
4 5 The weather is nice and sunny today. Positive

[]: # --
Step 4: Data Preprocessing
(For demo: dataset is already clean, so no extra steps)
--
print("\n� No cleaning needed, dataset already structured.")

� No cleaning needed, dataset already structured.

[]: # --
Step 5: Choose & Load Pre-trained LLM
We'll use Hugging Face sentiment-analysis pipeline
--
classifier = pipeline("sentiment-analysis")

No model was supplied, defaulted to distilbert/distilbert-base-uncased-
finetuned-sst-2-english and revision 714eb0f
(https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-
sst-2-english).
Using a pipeline without specifying a model name and revision in production is
not recommended.
/usr/local/lib/python3.12/dist-packages/huggingface_hub/utils/_auth.py:94:
UserWarning:
The secret `HF_TOKEN` does not exist in your Colab secrets.
To authenticate with the Hugging Face Hub, create a token in your settings tab
(https://huggingface.co/settings/tokens), set it as secret in your Google Colab
and restart your session.
You will be able to reuse this secret in all of your notebooks.
Please note that authentication is recommended but still optional to access
public models or datasets.

warnings.warn(
Device set to use cpu

[]: # Step 6: Model Inference (Prediction)
Run LLM on each text in the dataset
--
results = []
for text in data["Text"]:

result = classifier(text)[0] # Predict sentiment
results.append(result['label'])

data["Predicted"] = results

print("\n� Predictions Added:")
print(data)# --

2

#

� Predictions Added:
ID Text Label Predicted

0 1 I love learning about AI and Machine Learning. Positive POSITIVE
1 2 This is the worst movie I have ever watched. Negative NEGATIVE
2 3 Python is a very useful programming language. Positive POSITIVE
3 4 I am not happy with the customer service. Negative NEGATIVE
4 5 The weather is nice and sunny today. Positive POSITIVE

[]: # --
Step 7: Evaluation
Compare Predicted vs Actual labels
--
Convert Hugging Face outputs ("POSITIVE"/"NEGATIVE") to match dataset labels
data["Predicted"] = data["Predicted"].replace({"POSITIVE": "Positive",␣

↪"NEGATIVE": "Negative"})

accuracy = accuracy_score(data["Label"], data["Predicted"])
print(f"\n� Accuracy: {accuracy:.2f}")

print("\n� Classification Report:")
print(classification_report(data["Label"], data["Predicted"]))

Confusion Matrix
cm = confusion_matrix(data["Label"], data["Predicted"], labels=["Positive",␣

↪"Negative"])
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["Positive",␣

↪"Negative"])
disp.plot(cmap="Blues")
plt.title("Confusion Matrix")
plt.show()

� Accuracy: 1.00

� Classification Report:
precision recall f1-score support

Negative 1.00 1.00 1.00 2
Positive 1.00 1.00 1.00 3

accuracy 1.00 5
macro avg 1.00 1.00 1.00 5

weighted avg 1.00 1.00 1.00 5

3

[]: # --
Step 8: Results & Visualization
Show distribution of actual vs predicted labels
--
fig, axes = plt.subplots(1, 2, figsize=(10, 4))

data["Label"].value_counts().plot(kind="bar", ax=axes[0], title="Actual Labels")
data["Predicted"].value_counts().plot(kind="bar", ax=axes[1], title="Predicted␣

↪Labels")

plt.suptitle("Actual vs Predicted Label Distribution")
plt.show()

4

[]: # --
Step 9: Save Results (Deployment Preparation)
Save predictions to Excel
--
data.to_excel("llm_results.xlsx", index=False)
print("\n� Results saved as 'llm_results.xlsx'")

(Optional) Step 9b: Deployment with Streamlit or Flask can be added later

� Results saved as 'llm_results.xlsx'

[]: !pip install streamlit

Requirement already satisfied: streamlit in /usr/local/lib/python3.12/dist-
packages (1.49.1)
Requirement already satisfied: altair!=5.4.0,!=5.4.1,<6,>=4.0 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (5.5.0)
Requirement already satisfied: blinker<2,>=1.5.0 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (1.9.0)
Requirement already satisfied: cachetools<7,>=4.0 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (5.5.2)
Requirement already satisfied: click<9,>=7.0 in /usr/local/lib/python3.12/dist-
packages (from streamlit) (8.2.1)
Requirement already satisfied: numpy<3,>=1.23 in /usr/local/lib/python3.12/dist-
packages (from streamlit) (2.0.2)
Requirement already satisfied: packaging<26,>=20 in

5

/usr/local/lib/python3.12/dist-packages (from streamlit) (25.0)
Requirement already satisfied: pandas<3,>=1.4.0 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (2.2.2)
Requirement already satisfied: pillow<12,>=7.1.0 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (11.3.0)
Requirement already satisfied: protobuf<7,>=3.20 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (5.29.5)
Requirement already satisfied: pyarrow>=7.0 in /usr/local/lib/python3.12/dist-
packages (from streamlit) (18.1.0)
Requirement already satisfied: requests<3,>=2.27 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (2.32.4)
Requirement already satisfied: tenacity<10,>=8.1.0 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (8.5.0)
Requirement already satisfied: toml<2,>=0.10.1 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (0.10.2)
Requirement already satisfied: typing-extensions<5,>=4.4.0 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (4.15.0)
Requirement already satisfied: watchdog<7,>=2.1.5 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (6.0.0)
Requirement already satisfied: gitpython!=3.1.19,<4,>=3.0.7 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (3.1.45)
Requirement already satisfied: pydeck<1,>=0.8.0b4 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (0.9.1)
Requirement already satisfied: tornado!=6.5.0,<7,>=6.0.3 in
/usr/local/lib/python3.12/dist-packages (from streamlit) (6.4.2)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.12/dist-packages
(from altair!=5.4.0,!=5.4.1,<6,>=4.0->streamlit) (3.1.6)
Requirement already satisfied: jsonschema>=3.0 in
/usr/local/lib/python3.12/dist-packages (from
altair!=5.4.0,!=5.4.1,<6,>=4.0->streamlit) (4.25.1)
Requirement already satisfied: narwhals>=1.14.2 in
/usr/local/lib/python3.12/dist-packages (from
altair!=5.4.0,!=5.4.1,<6,>=4.0->streamlit) (2.3.0)
Requirement already satisfied: gitdb<5,>=4.0.1 in
/usr/local/lib/python3.12/dist-packages (from
gitpython!=3.1.19,<4,>=3.0.7->streamlit) (4.0.12)
Requirement already satisfied: python-dateutil>=2.8.2 in
/usr/local/lib/python3.12/dist-packages (from pandas<3,>=1.4.0->streamlit)
(2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.12/dist-
packages (from pandas<3,>=1.4.0->streamlit) (2025.2)
Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.12/dist-
packages (from pandas<3,>=1.4.0->streamlit) (2025.2)
Requirement already satisfied: charset_normalizer<4,>=2 in
/usr/local/lib/python3.12/dist-packages (from requests<3,>=2.27->streamlit)
(3.4.3)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.12/dist-
packages (from requests<3,>=2.27->streamlit) (3.10)

6

Requirement already satisfied: urllib3<3,>=1.21.1 in
/usr/local/lib/python3.12/dist-packages (from requests<3,>=2.27->streamlit)
(2.5.0)
Requirement already satisfied: certifi>=2017.4.17 in
/usr/local/lib/python3.12/dist-packages (from requests<3,>=2.27->streamlit)
(2025.8.3)
Requirement already satisfied: smmap<6,>=3.0.1 in
/usr/local/lib/python3.12/dist-packages (from
gitdb<5,>=4.0.1->gitpython!=3.1.19,<4,>=3.0.7->streamlit) (5.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in
/usr/local/lib/python3.12/dist-packages (from
jinja2->altair!=5.4.0,!=5.4.1,<6,>=4.0->streamlit) (3.0.2)
Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.12/dist-
packages (from jsonschema>=3.0->altair!=5.4.0,!=5.4.1,<6,>=4.0->streamlit)
(25.3.0)
Requirement already satisfied: jsonschema-specifications>=2023.03.6 in
/usr/local/lib/python3.12/dist-packages (from
jsonschema>=3.0->altair!=5.4.0,!=5.4.1,<6,>=4.0->streamlit) (2025.4.1)
Requirement already satisfied: referencing>=0.28.4 in
/usr/local/lib/python3.12/dist-packages (from
jsonschema>=3.0->altair!=5.4.0,!=5.4.1,<6,>=4.0->streamlit) (0.36.2)
Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.12/dist-
packages (from jsonschema>=3.0->altair!=5.4.0,!=5.4.1,<6,>=4.0->streamlit)
(0.27.1)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-
packages (from python-dateutil>=2.8.2->pandas<3,>=1.4.0->streamlit) (1.17.0)

[]: from transformers import pipeline
from textblob import TextBlob

Initialize Hugging Face sentiment classifier
classifier = pipeline("sentiment-analysis")

print("� Enter your text to check sentiment (type 'quit' to exit)\n")

while True:
text = input("Enter text: ")

if text.lower() == "quit":
print("Exiting... �")
break

Hugging Face analysis
hf_result = classifier(text)[0]
hf_label = hf_result['label'] # 'POSITIVE' or 'NEGATIVE'
hf_score = hf_result['score'] # Confidence score

7

TextBlob analysis
blob = TextBlob(text)
polarity = blob.sentiment.polarity
if polarity > 0:

tb_sentiment = "Positive"
elif polarity < 0:

tb_sentiment = "Negative"
else:

tb_sentiment = "Neutral"

Combine both for a final sentiment
if hf_label == "POSITIVE" and polarity >= 0:

final_sentiment = "Positive �"
elif hf_label == "NEGATIVE" and polarity <= 0:

final_sentiment = "Negative �"
else:

If models disagree or TextBlob is neutral, trust Hugging Face␣
↪confidence

if hf_score >= 0.7:
final_sentiment = "Positive �" if hf_label == "POSITIVE" else␣

↪"Negative �"
else:

final_sentiment = "Neutral �"

print(f"� Hugging Face: {hf_label} | Confidence: {hf_score:.2f}")
print(f"� TextBlob: {tb_sentiment}")
print(f"� Final Sentiment: {final_sentiment}\n")

No model was supplied, defaulted to distilbert/distilbert-base-uncased-
finetuned-sst-2-english and revision 714eb0f
(https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-
sst-2-english).
Using a pipeline without specifying a model name and revision in production is
not recommended.
Device set to use cpu

� Enter your text to check sentiment (type 'quit' to exit)

� Hugging Face: NEGATIVE | Confidence: 1.00
� TextBlob: Neutral
� Final Sentiment: Negative �

� Hugging Face: POSITIVE | Confidence: 1.00
� TextBlob: Positive
� Final Sentiment: Positive �

� Hugging Face: NEGATIVE | Confidence: 1.00
� TextBlob: Negative

8

� Final Sentiment: Negative �

� Hugging Face: NEGATIVE | Confidence: 0.99
� TextBlob: Neutral
� Final Sentiment: Negative �

[]: print("\n� LLM Mini Project Completed Successfully �")

� LLM Mini Project Completed Successfully �

[]: data_ = pd.read_excel("/content/llm_results.xlsx")

[]: data_

[]: ID Text Label Predicted
0 1 I love learning about AI and Machine Learning. Positive Positive
1 2 This is the worst movie I have ever watched. Negative Negative
2 3 Python is a very useful programming language. Positive Positive
3 4 I am not happy with the customer service. Negative Negative
4 5 The weather is nice and sunny today. Positive Positive

#Aim-

#The objective of this project is to classify text sentiment (positive or negative) by applying pre-
trained Large Language Models (LLMs) without training or fine-tuning the model yourself.

4 Approach and Tools Used-

5 * Pre-trained LLM (DistilBERT) from Hugging Face Transform-
ers was used to make predictions on the dataset. This model has
been trained on large-scale public datasets for sentiment tasks
and is used directly for inference.

6 * TextBlob, a lexical-based sentiment analyzer, was optionally
used to offer an alternative sentiment score.

7 * scikit-learn metrics were used only to evaluate the predictions
(accuracy, classification report, confusion matrix).

8 * pandas for data loading and manipulation.

9 * matplotlib for data visualization.
#Key Details-

9

• There is no custom training or fine-tuning performed in this project, making it a straightfor-
ward use case of LLMs for sentiment classification.

• This is a common and effective approach, since pre-trained LLMs bring deep language un-
derstanding without needing large labeled datasets or expensive training.

• The project covers all important steps: data loading, inference using pre-trained LLMs, result
evaluation, and visualization.

10 Conclusion-

11 This project demonstrates sentiment classification using pre-
trained Large Language Models without custom training.
The Hugging Face DistilBERT sentiment-analysis pipeline was
leveraged directly to infer sentiment labels on the dataset, sup-
ported by evaluation metrics. This approach is a practical,
real-world application of LLMs for text analysis tasks.

[]:

10

	MINI LARGE LANGUAGE MODEL (LLM)PROJECT
	LLM (Large Language Model) :-
	A smart AI model trained on large amounts of text that can read, understand, and generate human-like text, helping in tasks like answering questions, analyzing text, or automating communication
	Approach and Tools Used-
	* Pre-trained LLM (DistilBERT) from Hugging Face Transformers was used to make predictions on the dataset. This model has been trained on large-scale public datasets for sentiment tasks and is used directly for inference.
	* TextBlob, a lexical-based sentiment analyzer, was optionally used to offer an alternative sentiment score.
	* scikit-learn metrics were used only to evaluate the predictions (accuracy, classification report, confusion matrix).
	* pandas for data loading and manipulation.
	* matplotlib for data visualization.
	Conclusion-
	This project demonstrates sentiment classification using pre-trained Large Language Models without custom training. The Hugging Face DistilBERT sentiment-analysis pipeline was leveraged directly to infer sentiment labels on the dataset, supported by evaluation metrics. This approach is a practical, real-world application of LLMs for text analysis tasks.

